... > Электричество и магнетизм > Электромагнитные волны. Открытый...

Электромагнитные волны. Открытый колебательный контур

НАВИГАЦИЯ ПО СТРАНИЦЕ

Электромагнитные волны Открытый колебательный контур частотой электромагнитной волны излучающий вибратор Герца приёмного вибратора
ПОЛНЫЙ ОТВЕТ
БЕЗ ВОДЫ
Без воды — краткий вариант ответа,
легко понять и запомнить

Электромагнитные волны

Важнейший результат электродинамики, вытекающий из уравнений Максвелла, состоит в том, что электромагнитные взаимодействия передаются из одной точки пространства в другую не мгновенно, а с конечной скоростью. В вакууме скорость распространения электромагнитных взаимодействий совпадает со скоростью света c = м/с.

Рассмотрим, например, два покоящихся заряда, находящихся на некотором расстоянии друг от друга. Сила их взаимодействия определяется законом Кулона. Шевельнём один из зарядов; согласно закону Кулона сила взаимодействия изменится мгновенно — второй заряд сразу «почувствует» изменение положения первого заряда. Так утверждала теория дальнодействия.

Однако в действительности дело обстоит иначе. При шевелении заряда электрическое поле вблизи него меняется и порождает магнитное поле. Это магнитное поле также является переменным и, в свою очередь, порождает переменное электрическое поле, которое опять порождает переменное магнитное поле и т. д. Таким образом, в окружающем пространстве начинает распространяться процесс колебаний напряжённости электрического поля и индукции магнитного поля — электромагнитная волна.

Электромагнитные волны – это электромагнитные колебания, распространяющееся в пространстве с конечной скоростью.

Спустя некоторое время эта электромагнитная волна достигнет второго заряда; лишь тогда — а не мгновенно! — он и «почувствует», что положение первого заряда изменилось.

Открытый колебательный контур

Электромагнитные волны должны быть достаточно интенсивными для того, чтобы их можно было наблюдать в эксперименте.

Нетрудно понять, что электромагнитные волны будут тем интенсивнее, чем быстрее меняется положение зарядов, излучающих эти волны. Действительно, в таком случае электрическое поле вблизи зарядов меняется с большей скоростью и порождает большее магнитное поле; оно, в свою очередь, меняется столь же быстро и порождает большее электрическое поле, и т. д

В частности, интенсивные электромагнитные волны порождаются высокочастотными электромагнитными колебаниями.

Электромагнитные колебания создаются в хорошо знакомом нам колебательном контуре. Частота колебаний заряда и тока в контуре равна

С этой же частотой колеблются векторы E и B в заданной точке пространства. Поэтому величина ν, вычисляемая по формуле (1), будет также частотой электромагнитной волны.

Чтобы увеличить частоту колебаний в контуре, нужно уменьшать ёмкость конденсатора и индуктивность катушки.

Но эксперименты показали, что дело не ограничивается одной лишь высокой частотой колебаний. Для образования интенсивных электромагнитных волн существенным оказывается ещё один фактор: переменное электромагнитное поле, являющееся источником электромагнитных волн, должно занимать достаточно большую область пространства.

Между тем, в обычном колебательном контуре, состоящем из конденсатора и катушки, переменное электрическое поле почти целиком сосредоточено в малой области внутри конденсатора, а переменное магнитное поле — в малой области внутри катушки. Поэтому даже при достаточно высокой частоте колебаний такой колебательный контур оказался непригоден для излучения электромагнитных волн.

Как добиться увеличения области, занимаемой высокочастотным электромагнитным полем? Герц нашёл красивое и гениально простое решение — открытый колебательный контур.

Возьмём обычный колебательный контур (рис. 1, слева). Начнём уменьшать число витков катушки — от этого её индуктивность будет уменьшаться. Одновременно уменьшаем площадь пластин конденсатора и раздвигаем их — это приводит к уменьшению ёмкости конденсатора и к увеличению пространственной области, занимаемой электрическим полем. Эта промежуточная ситуация изображена на рис. 1 в середине.

Рис. 1. Превращение обычного колебательного контура в открытый

Рис. 1. Превращение обычного колебательного контура в открытый

К чему мы придём, продолжая этот процесс? Катушка ликвидируется вовсе, превращаясь в кусок проводника. Пластины конденсатора раздвигаюся максимально далеко и оказываются на концах этого проводника (рис. 1, справа). Остаётся уменьшить до предела размеры пластин — и получится самый обычный прямолинейный стержень! Это и есть открытый колебательный контур (рис. 2).

Рис. 2. Открытый колебательный контур

Рис. 2. Открытый колебательный контур

Таким образом, идея Герца превратить обычный колебательный контур в открытый позволила сразу «убить двух зайцев»:

  1. ёмкость и индуктивность стержня очень малы, поэтому в нём возбуждаются колебания весьма высокой частоты;

  2. переменное электромагнитное поле занимает довольно большую область пространства вокруг стержня.

Поэтому такой стержень может служить источником достаточно интенсивных электромагнитных волн, которые будут доступны для экспериментального наблюдения.

Но как возбудить в стержне электромагнитные колебания? Герц разрезал стержень посередине, раздвинул половинки на небольшое расстояние (создав так называемый разрядный промежуток) и подключил их к источнику высокого напряжения (рис. 3).

Рис. 3. Излучающий вибратор Герца

Рис. 3. Излучающий вибратор Герца

Получился излучающий вибратор Герца; концы провода в разрядном промежутке снабжались небольшими шариками. Когда напряжение между шариками превышало напряжение пробоя, в разрядном промежутке проскакивала искра. Во время существования искры цепь замыкалась, и в стержне возникали электромагнитные колебания — вибратор излучал электромагнитные волны.

Герц регистрировал эти волны с помощью приёмного вибратора — проводника с шариками на концах разрядного промежутка (рис. 4). Приёмный вибратор находился поодаль, на некотором расстоянии от излучающего вибратора.

Рис. 4. Приёмный вибратор Герца

Рис. 4. Приёмный вибратор Герца

Переменное электрическое поле электромагнитной волны возбуждало в приёмном вибраторе переменный ток. Если частота этого тока совпадала с собственной частотой приёмного вибратора, то возникал резонанс, и в разрядном промежутке проскакивала искра!

Наличие этой искры, появляющейся на концах совершенно изолированного проводника, явилось ярким свидетельством существования электромагнитных волн.