Тепловые машины

НАВИГАЦИЯ ПО СТРАНИЦЕ

Тепловые машины. КПД. Время: 1.14-3.44 Тепловые двигатели Рабочее тело двигателя КПД теплового двигателя
ПОЛНЫЙ ОТВЕТ
БЕЗ ВОДЫ
Без воды — краткий вариант ответа,
легко понять и запомнить

Тепловые машины. КПД. Время: 1.14-3.44

Сегодня на уроке мы выясним, что такое необратимый и самопроизвольный процессы. Сформулируем второй закон термодинамики, а также определим, чем отличается цикл Карно и каков максимальный КПД тепловой машины. Таймкод: 0:00 Тема и план урока 0:20 Необратимый процесс 0:46 Самопроизвольный процесс 0:55 Второй закон термодинамики 1:14 Термодинамический цикл 1:50 Работа газа, КПД 2:12 Цикл Карно 2:20 Максимальный КПД 2:36 Примеры 3:26 Итоги Понравилось, как преподаватель объясняет материал? Получи ещё больше полезного контента о подготовке к экзаменам в наших соц.сетях: https://clck.ru/Zr7kn - канал в Дзене, где разбираем сложные темы в образовании https://vk.com/domy24 - паблик ВК, в котором постоянно проводят розыгрыши и конкурсы А обо всём, что мы делаем, можно узнать у нас на сайте: https://center-think.ru/

Коротко говоря, тепловые машины преобразуют теплоту в работу или, наоборот, работу в теплоту. Тепловые машины бывают двух видов — в зависимости от направления протекающих в них процессов.

  1. Тепловые двигатели преобразуют теплоту, поступающую от внешнего источника, в механическую работу. Автомобильный двигатель внутреннего сгорания — это пример теплового двигателя. В нём происходит преобразование тепла, выделяющегося при сгорании топлива, в механическую энергию автомобиля.

  2. Холодильные машины передают тепло от менее нагретого тела к более нагретому за счёт механической работы внешнего источника.

Бытовой холодильник, который стоит у вас в квартире, служит примером холодильной машины. В нём тепло отводится от холодильной камеры и передаётся в окружающее пространство. Рассмотрим эти виды тепловых машин более подробно.

Тепловые двигатели

Мы знаем, что совершение над телом работы есть один из способов изменения его внутренней энергии: совершённая работа как бы растворяется в теле, переходя в энергию беспорядочного движения и взаимодействия его частиц.

Тепловой двигатель — это устройство, которое, наоборот, извлекает полезную работу из «хаотической» внутренней энергии тела.

Изобретение теплового двигателя радикально изменило облик человеческой цивилизации. Принципиальную схему теплового двигателя можно изобразить следующим образом (рис.1)

Рисунок 1. Тепловой двигатель

Рисунок 1. Тепловой двигатель

Рабочее тело двигателя — это газ. Он расширяется, двигает поршень и совершает тем самым полезную механическую работу.

Но чтобы заставить газ расширяться, преодолевая внешние силы, нужно нагреть его до температуры, которая существенно выше температуры окружающей среды. Для этого газ приводится в контакт с нагревателем — сгорающим топливом.

В процессе сгорания топлива выделяется значительная энергия, часть которой идёт на нагревание газа. Газ получает от нагревателя количество теплоты Q1. Именно за счёт этого тепла двигатель совершает полезную работу A.

При однократном расширении газа мы можем использовать поступающее тепло максимально эффективно и целиком превратить его в работу. Для этого надо расширять газ изотермически: первый закон термодинамики, как мы знаем, даёт нам в этом случае A = Q1.

Но однократное расширение никому не нужно. Двигатель должен работать циклически, обеспечивая периодическую повторяемость движений поршня. Следовательно, по окончании расширения газ нужно сжимать, возвращая его в исходное состояние.

В процессе расширения газ совершает некоторую положительную работу A1. В процессе сжатия над газом совершается положительная работа A2 (а сам газ совершает отрицательную работу −A2). В итоге полезная работа газа за цикл: A = A1 − A2. Разумеется, должно быть A > 0, или A2 < A1 (иначе никакого смысла в двигателе нет). Сжимая газ, мы должны совершить меньшую работу, чем совершил газ при расширении.

Как этого достичь? Ответ: сжимать газ под меньшими давлениями, чем были в ходе расширения. Иными словами, на pV -диаграмме процесс сжатия должен идти ниже процесса расширения, т. е. цикл должен проходиться по часовой стрелке.

Рисунок 1. Цикл теплового двигателя

Рисунок 1. Цикл теплового двигателя

Хорошо, но как заставить газ возвращаться в исходное состояние по более низкой кривой, то есть через состояния с меньшими давлениями? Вспомним, что при данном объёме давление газа тем меньше, чем ниже температура. Стало быть, при сжатии газ должен проходить состояния с меньшими температурами.

Вот именно для этого и нужен холодильник: чтобы охлаждать газ в процессе сжатия. Холодильником может служить атмосфера (для двигателей внутреннего сгорания) или охлаждающая проточная вода (для паровых турбин). При охлаждении газ отдаёт холодильнику некоторое количество теплоты Q2. Суммарное количество теплоты, полученное газом за цикл, оказывается равным Q1−Q2. Согласно первому закону термодинамики:

где — изменение внутренней энергии газа за цикл. Оно равно нулю: = 0, так как газ вернулся в исходное состояние (а внутренняя энергия, как мы помним, является функцией состояния). В итоге работа газа за цикл получается равна:

Как видите, A < Q1: не удаётся полностью превратить в работу поступающее от нагревателя тепло. Часть теплоты приходится отдавать холодильнику — для обеспечения цикличности процесса

Показателем эффективности превращения энергии сгорающего топлива в механическую работу служит коэффициент полезного действия теплового двигателя.

КПД теплового двигателя — это отношение механической работы A к количеству теплоты Q1, поступившему от нагревателя:

КПД теплового двигателя, как видим, всегда меньше единицы. Например, КПД паровых турбин приблизительно 25%, а КПД двигателей внутреннего сгорания около 40%.