Энергия связи ядра
НАВИГАЦИЯ ПО СТРАНИЦЕ
Энергия связи ядра
Атомное ядро, согласно нуклонной модели, состоит из нуклонов — протонов и нейтронов. Но какие силы удерживают нуклоны внутри ядра?
За счёт чего, например, держатся вместе два протона и два нейтрона внутри ядра атома гелия? Ведь протоны, отталкиваясь друг от друга электрическими силами, должны были бы разлететься в разные стороны! Может быть, это гравитационное притяжение нуклонов друг к другу не даёт ядру распасться?
Давайте проверим. Пусть два протона находятся на некотором расстоянии r друг от друга. Найдём отношение силы Fel их электрического отталкивания к силе Fgr их гравитационного притяжения:
Какое чудовищное превосходство электрической силы! Гравитационное притяжение протонов не то что не обеспечивает устойчивость ядра — оно вообще не заметно на фоне их взаимного электрического отталкивания.
Следовательно, существуют иные силы притяжения, которые скрепляют нуклоны внутри ядра и превосходят по величине силу электрического отталкивания протонов. Это — так называемые ядерные силы.
Ядерные силы
До сих пор мы знали два типа взаимодействий в природе — гравитационные и электромагнитные. Ядерные силы служат проявлением нового, третьего по счёту типа взаимодействий — сильного взаимодействия. Мы не будем вдаваться в механизм возникновения ядерных сил, а лишь перечислим их наиболее важные свойства.
Ядерные силы действуют между любыми двумя нуклонами: протоном и протоном, протоном и нейтроном, нейтроном и нейтроном.
Ядерные силы притяжения протонов внутри ядра примерно в 100 раз превосходят силу электрического отталкивания протонов. Более мощных сил, чем ядерные, в природе не наблюдается.
Ядерные силы притяжения являются короткодействующими: радиус их действия составляет около м. Это и есть размер ядра — именно на таком расстоянии друг от друга нуклоны удерживаются ядерными силами. При увеличении расстояния ядерные силы очень быстро убывают; если расстояние между нуклонами станет равным 2 · м, ядерные силы почти полностью исчезнут.
Сильное взаимодействие относится к числу фундаментальных — его нельзя объяснить на основе каких-то других типов взаимодействий. Способность к сильным взаимодействиям оказалась свойственной не только протонам и нейтронам, но и некоторым другим элементарным частицам; все такие частицы получили название адронов. Электроны и фотоны к адронам не относятся — они в сильных взаимодействиях не участвуют.