Принцип вложенных шаров и теорема Бэра о категории
НАВИГАЦИЯ ПО СТРАНИЦЕ
Теорема (Кантора, принцип вложенных шаров). Метрическое пространство полно тогда и только тогда когда любая убывающая последовательность замкнутых шаров, радиусы которых стремятся к нулю, имеет непустое пересечение.
Подмножество метрического пространства называется множеством первой категории (Бэра), если оно может быть представлено как счетное объединение нигде не плотных множеств.
Примеры. Счетное подмножество метрического пространства является множеством первой категории; нигде не плотное подмножество является множеством первой категории.
Следующая важная теорема показывает, что полное метрическое пространство не может быть «маленьким».
Теорема (Бэра о категориях). Полное метрическое пространство не может быть множеством первой категории Бэра.